Cross-entropy analysis of the information in forensic speaker recognition
نویسندگان
چکیده
In this work we analyze the average information supplied by a forensic speaker recognition system in an informationtheoretical way. The objective is the transparent reporting of the performance of the system in terms of information, according to the needs of transparency and testability in forensic science. This analysis allows the derivation of a proper measure of goodness for forensic speaker recognition, the empirical cross-entropy ( ), according to previous work in the literature. We also propose an intuitive representation, namely the plot, which allows forensic scientists to explain the average information given by the evidence analysis process in a clear and intuitive way. Such representation allows the forensic scientist to assess the evidence evaluation process with independence of the prior information, which is province of the court. Then, fact finders may check the average information given by the evidence analysis with the incorporation of prior information. An experimental example following NIST SRE 2006 protocol is presented in order to highlight the adequacy of the proposed framework in the forensic inferential process. An example of the presentation of the average information supplied by the forensic analysis of the speech evidence in court is also provided, simulating a real case.
منابع مشابه
Deconstructing Cross-Entropy for Probabilistic Binary Classifiers
In this work, we analyze the cross-entropy function, widely used in classifiers both as a performance measure and as an optimization objective. We contextualize cross-entropy in the light of Bayesian decision theory, the formal probabilistic framework for making decisions, and we thoroughly analyze its motivation, meaning and interpretation from an information-theoretical point of view. In this...
متن کاملForensic Evaluation of the Evidence Using Automatic Speaker Recognition Systems –tesis Doctoral– Evaluación De La Evidencia Forense Utilizando Sistemas Automáticos De Reconocimiento De Locutor
This Thesis is focused on the use of automatic speaker recognition systems for forensic identification, in what is called forensic automatic speaker recognition. More generally, forensic identification aims at individualization, defined as the certainty of distinguishing an object or person from any other in a given population. This objective is followed by the analysis of the forensic evidence...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملAutomatic Speaker Recognition for Forensic Case Assessment and Interpretation
Abstract Forensic speaker recognition (FSR) is the process of determining if a specific individual (suspected speaker) is the source of a questioned voice recording (trace). The forensic expert’s role is to testify to the worth of the voice evidence by using, if possible, a quantitative measure of this worth. It is up to the judge and/ or the jury to use this information as an aid to their deli...
متن کاملAutomatic-type calibration of traditionally derived likelihood ratios: forensic analysis of australian English /o/ formant trajectories
A traditional-style phonetic-acoustic forensic-speakerrecognition analysis was conducted on Australian English /o/ recordings. Different parametric curves were fitted to the formant trajectories of the vowel tokens, and cross-validated likelihood ratios were calculated using a single-stage generative multivariate kernel density formula. The outputs of different systems were compared using Cllr,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008